Comparison of Glycopeptide or Lipopeptide versus Beta-Lactam for the Treatment of Enterococcus Faecalis Bacteremia: A National Retrospective Cohort Study of Veterans Affairs

Angela Kaucher
PGY2 Infectious Diseases Pharmacy Resident
Kansas City VA Medical Center

5 June 2020
Disclosure

• The speaker has no actual or potential conflicts of interest in relation to this presentation
Project Background

• High incidence of 30-day all-cause mortality in enterococcal bacteremia (7-40%)

• Optimal therapy for Enterococcus faecalis (EF) has not been well studied

• Recent studies report mixed results comparing mortality risk of glycopeptide vs. beta-lactam therapy for enterococcal bacteremia

• No studies to date have compared outcomes for lipopeptides vs. beta-lactam or glycopeptide therapies for enterococcal bacteremia
Previous Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Enterococcus Infection</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foo et al. 2014</td>
<td>172</td>
<td>100% E. faecalis</td>
<td>30-day all-cause mortality: 15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(33% polymicrobial)</td>
<td>• Glycopeptide 26.1% vs. β-lactam 11.1% (p=0.015)</td>
</tr>
<tr>
<td>Fletcher et al. 2018</td>
<td>186</td>
<td>95% E. faecalis</td>
<td>30-day all-cause mortality: 7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(% polymicrobial not defined)</td>
<td>• Glycopeptide 6.7% vs. β-lactam 7.1% (p=0.922)</td>
</tr>
<tr>
<td>Petersiel et al. 2019</td>
<td>516</td>
<td>77% E. faecalis</td>
<td>30-day all-cause mortality: 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(38% polymicrobial)</td>
<td>• Glycopeptide 40.8% vs. β-lactam 39% (p=0.692)</td>
</tr>
</tbody>
</table>
Purpose

Study Objective

• To compare outcomes in patients with ampicillin-susceptible, vancomycin-susceptible *Enterococcus faecalis* bacteremia treated with intravenous glycopeptide, lipopeptide, or beta-lactam therapy
Inclusion and Exclusion Criteria

Inclusion Criteria
- Patients age ≥18 years admitted to VAMC
- Clinically significant EF bacteremia
- EF susceptible to ampicillin (or penicillin) and vancomycin (daptomycin, if reported)
- Appropriate therapy with glycopeptide, lipopeptide, or beta-lactam antibiotic

Exclusion Criteria
- Subsequent episodes of EF bacteremia within the study period
- Treatment with combination of beta-lactam plus glycopeptide or lipopeptide
- Antibiotic therapy <5 days
- Polymicrobial bacteremia
Methods

• Retrospective review of national database of patients admitted to Veterans Affairs Medical Centers
 – January 1, 2012 to December 31, 2017

• Treatment Groups

<table>
<thead>
<tr>
<th>Beta-lactam Therapy</th>
<th>Glycopeptide Therapy</th>
<th>Lipopeptide Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ampicillin</td>
<td>• Vancomycin</td>
<td>• Daptomycin</td>
</tr>
<tr>
<td>• Ampicillin/sulbactam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VETERANS HEALTH ADMINISTRATION
End Points

• Primary
 – 30-day all-cause mortality

• Secondary
 – Recurrent *Enterococcus faecalis* bacteremia
 – Hospital mortality
 – One-year all-cause mortality
 – Incidence of *C. difficile* infection
 – Hospital and ICU length of stay
 – Duration of bacteremia

ICU, intensive care unit
Statistics

- **Power calculation**
 - 208 patients needed for 80% power to detect a 15% difference in 30-day all-cause mortality

<table>
<thead>
<tr>
<th>Primary Outcome</th>
<th>Type of Data</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day all-cause mortality</td>
<td>Non-continuous</td>
<td>Fisher’s exact or Chi-squared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kaplan-Meier with log-rank test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Outcomes</th>
<th>Type of Data</th>
<th>Statistical Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of recurrent bacteremia</td>
<td>Non-continuous</td>
<td>Fischer’s exact or Chi-squared</td>
</tr>
<tr>
<td>Incidence of C. difficile infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-year all-cause mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital and ICU length of stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of bacteremia</td>
<td>Continuous</td>
<td>T-test or Mann-Whitney U test</td>
</tr>
</tbody>
</table>
Results

1,038 unique patients hospitalized with *E. faecalis* bacteremia meeting study criteria

- **Ampicillin**
 n = 112

- **Vancomycin**
 n = 908

- **Daptomycin**
 n = 18
Patient Demographics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Ampicillin (n=112)</th>
<th>Vancomycin (n=908)</th>
<th>Daptomycin (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years ± SD</td>
<td>72.7 ± 11.1</td>
<td>73.2 ± 11.5</td>
<td>72.4 ± 11.1</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>111 (99.1)</td>
<td>891 (98.1)</td>
<td>17 (94.4)</td>
</tr>
<tr>
<td>ICU admission location, n (%)</td>
<td>15 (13.4)</td>
<td>229 (25.2)</td>
<td>3 (16.7)</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Ampicillin (n=112)</th>
<th>Vancomycin (n=908)</th>
<th>Daptomycin (n=18)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day all-cause mortality, n (%)</td>
<td>9 (8.0)</td>
<td>200 (22.0)</td>
<td>1 (5.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>1-year all-cause mortality, n (%)</td>
<td>38 (33.9)</td>
<td>448 (49.3)</td>
<td>6 (33.3)</td>
<td>0.004</td>
</tr>
<tr>
<td>Hospital mortality, n (%)</td>
<td>5 (4.5)</td>
<td>138 (15.2)</td>
<td>1 (5.6)</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Results

![Survival Rate Chart](chart.png)

- **Ampicillin**
- **Vancomycin**
- **Daptomycin**

Log-rank *P*=0.001
Results

![Graph showing percent survival over days for different antibiotics: Ampicillin, Vancomycin, and Daptomycin. The graph indicates log-rank P=0.002.](image)
Results

- Comparison of 30-day all-cause mortality between ampicillin and vancomycin treatment groups by multivariable logistic regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted Odds Ratio (95% confidence interval)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin treatment</td>
<td>2.80 (1.37-5.71)</td>
<td>0.005</td>
</tr>
<tr>
<td>ICU admission</td>
<td>3.68 (2.64-5.14)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>1.03 (1.01-1.05)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male gender</td>
<td>1.36 (0.41-4.49)</td>
<td>0.617</td>
</tr>
</tbody>
</table>
Conclusion

• Vancomycin is associated with increased mortality compared to ampicillin for the treatment of clinically significant ampicillin-susceptible, vancomycin-susceptible *Enterococcus faecalis* bloodstream infection.

• Lowest mortality numerically observed in daptomycin group, but limited by power.
Future Directions

- Further collection and adjustment for confounding factors between groups
- Expansion of cohort years included to increase daptomycin sample
- Evaluation of effect of vancomycin dosing on outcomes
Limitations

• Retrospective study

• Limited data available at this time

• VA patient population
Acknowledgements

Jamie Guyear, Pharm.D., BCIDP
Kansas City VA Medical Center

Nicholas Britt, Pharm.D., MS, BCPS, BCIDP
University of Kansas, Schools of Pharmacy and Medicine
VA Eastern Kansas Health Care System - Dwight D. Eisenhower VAMC

Emily Potter, Pharm.D., BCPS
VA Eastern Kansas Health Care System - Dwight D. Eisenhower VAMC
References

Questions?

Angela Kaucher
PGY2 Infectious Diseases Pharmacy Resident
Kansas City VA Medical Center
Angela.Kaucher@va.gov